$$e^{xz}=\cos(x,z)+z\sin(x,z)$$
:偏角: $$\arg z=\arg e^{xe^{i\theta}}=x\sin\theta~(\mathrm{rad})$$:絶対値: $$|z|=|e^{xe^{i\theta}}|=e^{x\cos\theta}$$
:$$\displaystyle\cos(x,e^{i\theta})=\lim_{t\to\theta}\left[e^{x\cos t}\cos(x\sin t)-\frac{e^{x\cos t}\sin(x\sin t)}{\tan t}\right]$$
:$$\displaystyle\sin(x,e^{i\theta})=\lim_{t\to\theta}\left[\frac{e^{x\cos t}\sin(x\sin t)}{\sin t}\right]$$
$$e^{i\alpha}=e^{-\alpha\cot\theta}\left[\cos\left(\frac{\alpha}{\sin\theta},e^{i\theta}\right)+z\sin\left(\frac{\alpha}{\sin\theta},e^{i\theta}\right)\right]$$
:偏角: $$\arg e^{i\alpha}=\alpha$$:絶対値: $$|e^{i\alpha}|=1$$
==導出==
$$e^{xz}=\cos\left(x,\frace^{i\theta}{2\pi}\right)+z\sin\left(x,\frace^{i\theta}{2\pi}\right)$$ の両辺を直交座標形式に変換
右辺
:$$\begin{align*}
&\textstyle\cos\left(x,\frace^{i\theta}{2\pi}\right)+z\sin\left(x,\frace^{i\theta}{2\pi}\right)\\=&\textstyle\cos\left(x,\frace^{i\theta}{2\pi}\right)+(\cos\theta+i\sin\theta)\sin\left(x,\frace^{i\theta}{2\pi}\right)\\=&\textstyle\left[\cos\left(x,\frace^{i\theta}{2\pi}\right)+\cos\theta\sin\left(x,\frace^{i\theta}{2\pi}\right)\right]+i\sin\theta\sin\left(x,\frace^{i\theta}{2\pi}\right)
\end{align*}$$