ガラパゴ三角関数

提供: 数学を愛する会Wiki
ナビゲーションに移動 検索に移動

ガラパゴ三角関数(ガラパゴさんかくかんすう)とは、$$+1$$ と $$z=e^{i\theta}$$ を理論上の基底の元($$z$$ が実数であっても独立した元であるものとみなして区別)とする斜交座標系において、極座標 $$e^{xz}$$ を基底の元の線形結合で表現したときの各元の係数を得る関数である。一般的な三角関数の純粋な拡張として みゆ により考案された。


ガラパゴ三角関数の幾何イメージ


概要

ガラパゴ三角関数 $$\cos_zx$$、$$\sin_zx$$ は、次のように表される。


$$\begin{align*} &\lim_{n\to\infty}\left(1+\frac{x}{n}z\right)^n=e^{xz}=\cos_zx+z\sin_zx\\ &\quad\begin{cases} z=e^{i\theta}\\ \displaystyle\cos_zx=\lim_{t\to\theta}\left[e^{x\cos t}\cos(x\sin t)-\frac{e^{x\cos t}\sin(x\sin t)}{\tan t}\right]\\ \displaystyle\sin_zx=\lim_{t\to\theta}\left[\frac{e^{x\cos t}\sin(x\sin t)}{\sin t}\right] \end{cases} \end{align*}$$


この式は


$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-1\\1&2\cos\theta\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2\cos\theta&-1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列


$$\begin{cases} S_0=0\\ S_1=1\\ S_{n}=-(S_{n-2})+(2\cos\theta)(S_{n-1}) \end{cases}$$


を用いると、級数展開形にて書き改めることができる。


$$\begin{align*} e^{xz}=&\cos_zx+z\sin_zx\\ =&\left(\sum_{k=0}^\infty\frac{C_{k}x^k}{k!}\right)+z\left(\sum_{k=0}^\infty\frac{S_{k}x^k}{k!}\right)\\ =&\left(-\sum_{k=0}^\infty\frac{S_{k-1}x^k}{k!}\right)+z\left(\sum_{k=0}^\infty\frac{S_{k}x^k}{k!}\right)\\ \end{align*}$$


ちなみにこの数列 $$S_n$$ は $$z$$ を生成元とする第1種ガラパゴ数列と同一である。


$$z=e^{i\theta}=\cos\theta+i\sin\theta$$、すなわち $$e^{xz}=e^{x(\cos\theta+i\sin\theta)}=e^{x\cos\theta+ix\sin\theta}$$ であることから、

$$e^{xz}$$ の偏角は $$\arg e^{xz}=x\sin\theta$$、絶対値は $$|e^{xz}|=e^{x\cos\theta}$$ であることがわかる。


$$\{\theta\ne N\pi\mid N\in\mathbb{Z}\}$$ においては $$|e^{xz}|=1$$ へ標準化することで直交座標系との関係性が次のように示される。

$$\begin{cases} \alpha=\arg e^{xz}=x\sin\theta\\ \begin{align*} e^{i\alpha}=&\cos\alpha+i\sin\alpha\\ =&e^{-\alpha\cot\theta}\left[\cos_z\frac{\alpha}{\sin\theta}+z\sin_z\frac{\alpha}{\sin\theta}\right]\end{align*} \end{cases}$$


導出

$$z=e^{i\theta}$$ において、 $$e^{xz}=\cos_zx+z\sin_zx$$ の両辺を直交座標形式に変換


左辺

$$\begin{align*} e^{xz}=&e^{xe^{i\theta}}\\ =&e^{x(\cos\theta+i\sin\theta)}\\ =&e^{x\cos\theta}\cdot e^{ix\sin\theta}\\ =&e^{x\cos\theta}[\cos(x\sin\theta)+i\sin(x\sin\theta)]\\ =&e^{x\cos\theta}\cos(x\sin\theta)+ie^{x\cos\theta}\sin(x\sin\theta) \end{align*}$$

右辺

$$\begin{align*} &\cos_zx+z\sin_zx\\ =&\cos_zx+(\cos\theta+i\sin\theta)\sin_zx\\ =&\left[\cos_zx+\cos\theta\sin_zx\right]+i\sin\theta\sin_zx \end{align*}$$


両辺の実部と虚部をそれぞれ比較

$$e^{x\cos\theta}\cos(x\sin\theta)=\cos_zx+\cos\theta\sin_zx$$
$$e^{x\cos\theta}\sin(x\sin\theta)=\sin\theta\sin_zx$$


$$\theta$$ が $$\pi$$ の整数倍の場合、 $$1$$ と $$e^{i\theta}$$ は線形従属となってしまうため、$$\theta$$ を $$t$$ とおいて $$t\to\theta$$ の極限として考える

$$\begin{align*} \cos_zx&=\lim_{t\to\theta}\left[e^{x\cos t}\cos(x\sin t)-\frac{e^{x\cos t}\sin(x\sin t)}{\tan t}\right]\\ \sin_zx&=\lim_{t\to\theta}\left[\frac{e^{x\cos t}\sin(x\sin t)}{\sin t}\right]\\ \end{align*}$$


級数展開形

$$+1$$ と $$z=e^{i\theta}$$ を(理論上の)基底の元とする斜交座標形式の複素数平面において、関数 $$f(x)=e^{xz}$$ を想定する。


$$\exp$$関数のマクローリン展開より


$$\displaystyle e^{xz}=\exp(xz)=\sum_{n=0}^{\infty}\frac{(xz)^n}{n!}=\sum_{n=0}^{\infty}\frac{z^n}{n!}x^n$$


ガラパゴ累乗定理より、$$z$$ を生成元とする第1種ガラパゴ数列 $$\displaystyle G_n=\frac{z^n-\overline{z}^{~n}}{z-\overline{z}}=\sum_{k=0}^\infty z^{n-2k-1}$$ を用いて


$$z^n = G_nz-G_{n-1}$$


と表せるため、


$$\begin{align*} \cos_zx=&-\sum_{k=0}^\infty\frac{G_{k-1}x^k}{k!}\\ \sin_zx=&+\sum_{k=0}^\infty\frac{G_{k}x^k}{k!}\\ \end{align*} $$


$$z=\mathrm{P}=e^{2\pi i}=1$$ のとき $$\rightarrow~2\cos\theta=2$$

$$\displaystyle\cos_zx=(1-x)e^x$$
$$\displaystyle\sin_zx=xe^x$$


$$z=\mathrm{P}^\frac12=e^{\frac{1}{2}\cdotp2\pi i}=-1$$($$1$$ の原始 $$2$$ 乗根)のとき $$\rightarrow~2\cos\theta=-2$$

$$\displaystyle\cos_zx=(1+x)e^{-x}$$
$$\displaystyle\sin_zx=xe^{-x}$$


$$z=\mathrm{P}^\frac13=e^{\frac{1}{3}\cdotp2\pi i}$$($$1$$ の原始 $$3$$ 乗根)のとき $$\rightarrow~2\cos\theta=-1$$

$$\displaystyle\cos_zx=\sum_{k=0}^{\infty}\frac{x^{3k}}{(3k)!}-\sum_{k=0}^{\infty}\frac{x^{3k+2}}{(3k+2)!}$$
$$\displaystyle\sin_zx=\sum_{k=0}^{\infty}\frac{x^{3k+1}}{(3k+1)!}-\sum_{k=0}^{\infty}\frac{x^{3k+2}}{(3k+2)!}$$


$$z=\mathrm{P}^\frac14=e^{\frac{1}{4}\cdotp2\pi i}$$($$1$$ の原始 $$4$$ 乗根)のとき $$\rightarrow~2\cos\theta=0$$

$$\displaystyle\cos_zx=\sum_{k=0}^{\infty}\frac{x^{4k}}{(4k)!}-\sum_{k=0}^{\infty}\frac{x^{4k+2}}{(4k+2)!}=\cos x$$
$$\displaystyle\sin_zx=\sum_{k=0}^{\infty}\frac{x^{4k+1}}{(4k+1)!}-\sum_{k=0}^{\infty}\frac{x^{4k+3}}{(4k+3)!}=\sin x$$


exps関数を用いた表現

$$\mathrm{exp}_s$$ 関数(skipped exponential 関数)を次のように定義する。

$$\displaystyle\exp_s(x)=\left(\sum_{k=0}^\infty\frac{x^{ks}}{(ks)!}\right)$$


この関数は $$\exp$$ 関数をマクローリン展開した各項のうち、$$x$$ の指数が $$s$$ の倍数である項のみによって構成される関数であり、$$s$$ 階微分することで元の関数と一致する(周階導関数)。


この関数を $$m$$ 階微分すると

$$\begin{align*} \mathrm{exp}^{(m)}_s(x) =&\frac{1}{s}\sum_{k=0}^{s-1}\left[\left(e^{\frac{m}{s}\cdot2\pi i}\right)^ke^{\left(e^{\frac{2\pi i}{s}}\right)^kx}\right]\\ =&\frac{1}{s}\sum_{k=0}^{s-1}\left[\exp\left(\frac{2km\pi}{s}i+\exp\left(\frac{2k\pi}{s}i\right)x\right)\right] \end{align*}$$

と表されるが、マクローリン展開形を考えれば単に各項の次数が落ちるだけと見ることができる。

すなわち、$$m=0$$ から $$m=s-1$$ までの $$s$$ 種類の関数を標準基底の元とすることで、あらゆる $$s$$ 階の周階導関数を構成可能である。


ガラパゴ三角関数は $$z=e^{i\theta}$$ が実数ではなく、かつ、$$\frac{\theta}{2\pi}$$ が有理数のときに周階導関数となるため、$$\mathrm{exp}_s$$ 関数の $$m$$ 階導関数を用いて以下のように示すことが可能である。


$$z=\mathrm{P}^{\frac13}=e^{\frac{2\pi}3i}$$ の場合 \begin{array}{c} +\cos_{z}x &=& \exp_3^{(0)}x-\exp_3^{(1)}x &\leftarrow[+1,~~0~,-1]\\ -\sin_{z}x &=& \exp_3^{(1)}x-\exp_3^{(2)}x &\leftarrow[~~0~,-1,+1]\\ -(\sin_{z}x)' &=& \exp_3^{(2)}x-\exp_3^{(0)}x &\leftarrow[-1,+1,~~0~]\\ \\ -\cos_{z}x &=& -\exp_3^{(0)}x+\exp_3^{(1)}x &\leftarrow[-1,~~0~,+1]\\ +\sin_{z}x &=& -\exp_3^{(1)}x+\exp_3^{(2)}x &\leftarrow[~~0~,+1,-1]\\ +(\sin_{z}x)' &=& -\exp_3^{(2)}x+\exp_3^{(0)}x &\leftarrow[+1,-1,~~0~]\\ \end{array}


$$z=\mathrm{P}^{\frac14}=e^{\frac{2\pi}4i}=e^{\frac{\pi}2i}$$ の場合 \begin{array}{c} +\cos x &=& +\cos_zx &=& \exp_4^{(0)}x-\exp_4^{(2)}x &\leftarrow[+1,~~0~,-1,~~0~]\\ -\sin x &=& -\sin_zx &=& \exp_4^{(1)}x-\exp_4^{(3)}x &\leftarrow[~~0~,-1,~~0~,+1]\\ -\cos x &=& -\cos_zx &=& \exp_4^{(2)}x-\exp_4^{(0)}x &\leftarrow[-1,~~0~,+1,~~0~]\\ +\sin x &=& +\sin_zx &=& \exp_4^{(3)}x-\exp_4^{(1)}x &\leftarrow[~~0~,+1,~~0~,-1]\\ \end{array}


$$z=\mathrm{P}^{\frac15}=e^{\frac{2\pi}5i}$$ の場合($$\phi'=\phi^{-1}=\frac{\sqrt5-1}2$$) \begin{array}{c} +\cos_zx &=& +\exp_5^{(0)}x-\exp_5^{(3)}x-\phi'\exp_5^{(2)}x+\phi'\exp_5^{(1)}x &\leftarrow[+1~,~~0~~,-1~,-\phi',+\phi']\\ -\sin_zx &=& +\exp_5^{(1)}x-\exp_5^{(4)}x-\phi'\exp_5^{(3)}x+\phi'\exp_5^{(2)}x &\leftarrow[~~0~~,-1~,-\phi',+\phi',+1~]\\ -(\sin_zx)' &=& +\exp_5^{(2)}x-\exp_5^{(5)}x-\phi'\exp_5^{(4)}x+\phi'\exp_5^{(3)}x &\leftarrow[-1~,-\phi',+\phi',+1~,~~0~~]\\ -(\sin_zx)'' &=& +\exp_5^{(3)}x-\exp_5^{(0)}x-\phi'\exp_5^{(5)}x+\phi'\exp_5^{(4)}x &\leftarrow[-\phi',+\phi',+1~,~~0~~,-1~]\\ -(\sin_zx)''' &=& +\exp_5^{(4)}x-\exp_5^{(1)}x-\phi'\exp_5^{(0)}x+\phi'\exp_5^{(5)}x &\leftarrow[+\phi',+1~,~~0~~,-1~,-\phi']\\ \\ -\cos_zx &=& -\exp_5^{(0)}x+\exp_5^{(3)}x+\phi'\exp_5^{(2)}x-\phi'\exp_5^{(1)}x &\leftarrow[-1~,~~0~~,+1~,+\phi',-\phi']\\ +\sin_zx &=& -\exp_5^{(1)}x+\exp_5^{(4)}x+\phi'\exp_5^{(3)}x-\phi'\exp_5^{(2)}x &\leftarrow[~~0~~,+1~,+\phi',-\phi',-1~]\\ +(\sin_zx)' &=& -\exp_5^{(2)}x+\exp_5^{(0)}x+\phi'\exp_5^{(4)}x-\phi'\exp_5^{(3)}x &\leftarrow[+1~,+\phi',-\phi',-1~,~~0~~]\\ +(\sin_zx)'' &=& -\exp_5^{(3)}x+\exp_5^{(1)}x+\phi'\exp_5^{(0)}x-\phi'\exp_5^{(4)}x &\leftarrow[+\phi',-\phi',-1~,~~0~~,+1~]\\ +(\sin_zx)''' &=& -\exp_5^{(4)}x+\exp_5^{(2)}x+\phi'\exp_5^{(1)}x-\phi'\exp_5^{(0)}x &\leftarrow[-\phi',-1~,~~0~~,+1~,+\phi']\\ \end{array}


$$z=\mathrm{P}^{\frac16}=e^{\frac{2\pi}6i}=e^{\frac{\pi}3i}$$ の場合 \begin{array}{c} +\cos_{z}x &=& \exp_6^{(0)}x-\exp_6^{(4)}x-\exp_6^{(3)}x+\exp_6^{(1)}x &\leftarrow[+1,~~0~,-1,-1,~~0~,+1]\\ -\sin_{z}x &=& \exp_6^{(1)}x-\exp_6^{(5)}x-\exp_6^{(4)}x+\exp_6^{(2)}x &\leftarrow[~~0~,-1,-1,~~0~,+1,+1]\\ -(\sin_{z}x)' &=& \exp_6^{(2)}x-\exp_6^{(0)}x-\exp_6^{(5)}x+\exp_6^{(3)}x &\leftarrow[-1,-1,~~0~,+1,+1,~~0~]\\ \\ -\cos_{z}x &=& \exp_6^{(3)}x-\exp_6^{(1)}x-\exp_6^{(0)}x+\exp_6^{(4)}x &\leftarrow[-1,~~0~,+1,+1,~~0~,-1]\\ +\sin_{z}x &=& \exp_6^{(4)}x-\exp_6^{(2)}x-\exp_6^{(1)}x+\exp_6^{(5)}x &\leftarrow[~~0~,+1,+1,~~0~,-1,-1]\\ +(\sin_{z}x)' &=& \exp_6^{(5)}x-\exp_6^{(3)}x-\exp_6^{(2)}x+\exp_6^{(0)}x &\leftarrow[+1,+1,~~0~,-1,-1,~~0~]\\ \end{array}