$$1$$ の原始 $$3$$ 乗根 $$z=e^{\frac{1}{3}\cdotp2\pi i}$$ のとき($$2\cos\theta=-1$$)
:$$\displaystyle\cos\left(x,e^{\pm\frac{1}{3}\cdotp2\pi i}\right)=\sum_{k=0}^{\infty}\frac{x^{3k}}{(3k)!}-\sum_{k=0}^{\infty}\frac{x^{3k+2}}{(3k+2)!}$$
:$$\displaystyle\sin\left(x,e^{\pm\frac{1}{3}\cdotp2\pi iii}\right)=\sum_{k=0}^{\infty}\frac{x^{3k+1}}{(3k+1)!}-\sum_{k=0}^{\infty}\frac{x^{3k+2}}{(3k+2)!}$$