$$z=\mathrm{P}^{\frac15}=e^{\frac{2\pi}5i}$$ の場合($$\phi'=\phi^{-1}=\frac{\sqrt5-1}2$$)
\begin{array}{c}
+\cos_zx && &=& +\exp_5^{(0)}x-\exp_4exp_5^{(3)}x-\phi'\exp_4exp_5^{(2)}x+\phi'\exp_4exp_5^{(1)}x &\leftarrow[+1~,~~0~~,-1~,-\phi',+\phi']\\-\sin_zx &=& +\sin_{z^{-1}}x &=& +\exp_5^{(1)}x-\exp_4exp_5^{(4)}x-\phi'\exp_4exp_5^{(3)}x+\phi'\exp_4exp_5^{(2)}x &\leftarrow[~~0~~,-1~,-\phi',+\phi',+1~]\\ && -\cos_{z^{-1}}x &=& +\exp_5^{(2)}x-\exp_4exp_5^{(5)}x-\phi'\exp_4exp_5^{(4)}x+\phi'\exp_4exp_5^{(3)}x &\leftarrow[-1~,-\phi',+\phi',+1~,~~0~~]\\ && (+\sin_{z^{-1}}x)'' &=& +\exp_5^{(3)}x-\exp_4exp_5^{(0)}x-\phi'\exp_4exp_5^{(5)}x+\phi'\exp_4exp_5^{(4)}x &\leftarrow[-\phi',+\phi',+1~,~~0~~,-1~]\\ && (-\cos_{z^{-1}}x)'' &=& +\exp_5^{(4)}x-\exp_4exp_5^{(1)}x-\phi'\exp_4exp_5^{(0)}x+\phi'\exp_4exp_5^{(5)}x &\leftarrow[+\phi',+1~,~~0~~,-1~,-\phi']\\
\\
-\cos_zx && &=& -\exp_5^{(0)}x+\exp_4exp_5^{(3)}x+\phi'\exp_4exp_5^{(2)}x-\phi'\exp_4exp_5^{(1)}x &\leftarrow[-1~,~~0~~,+1~,+\phi',-\phi']\\+\sin_zx &=& -\sin_{z^{-1}}x &=& -\exp_5^{(1)}x+\exp_4exp_5^{(4)}x+\phi'\exp_4exp_5^{(3)}x-\phi'\exp_4exp_5^{(2)}x &\leftarrow[~~0~~,+1~,+\phi',-\phi',-1~]\\ && +\cos_{z^{-1}}x &=& -\exp_5^{(2)}x+\exp_4exp_5^{(0)}x+\phi'\exp_4exp_5^{(4)}x-\phi'\exp_4exp_5^{(3)}x &\leftarrow[+1~,+\phi',-\phi',-1~,~~0~~]\\ && (-\sin_{z^{-1}}x)'' &=& -\exp_5^{(3)}x+\exp_4exp_5^{(1)}x+\phi'\exp_4exp_5^{(0)}x-\phi'\exp_4exp_5^{(4)}x &\leftarrow[+\phi',-\phi',-1~,~~0~~,+1~]\\ && (+\cos_{z^{-1}}x)'' &=& -\exp_5^{(4)}x+\exp_4exp_5^{(2)}x+\phi'\exp_4exp_5^{(1)}x-\phi'\exp_4exp_5^{(0)}x &\leftarrow[-\phi',-1~,~~0~~,+1~,+\phi']\\
\end{array}