「ガラパゴ累乗定理」の版間の差分

提供: 数学を愛する会Wiki
ナビゲーションに移動 検索に移動
10行目: 10行目:
  
  
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-l\\1&r\end{pmatrix}^n\\
+
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-l\\1&r\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}r&-l\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列
~または~\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}r&-l\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}
+
 
~すなわち~\begin{cases}
+
 
 +
:$$\begin{cases}
 
S_0=0\\
 
S_0=0\\
 
S_1=1\\
 
S_1=1\\
S_{n}=-(S_{n-2})l+(S_{n-1})r
+
S_{n}=-l(S_{n-2})+r(S_{n-1})
\end{cases}~として$$
+
\end{cases}$$
 +
 
  
 +
を用いて
  
  
:$$z^n=C_{n}+S_{n}z=-(S_{n-1})l+S_{n}\\$$
+
:$$z^n=C_{n}+S_{n}z=-l(S_{n-1})+(S_{n})z\\$$
 
:$$\begin{array}{l}
 
:$$\begin{array}{l}
 
z^1=&0+z\\
 
z^1=&0+z\\
29行目: 32行目:
 
&\quad\quad\quad\vdots\\
 
&\quad\quad\quad\vdots\\
 
\end{array}$$
 
\end{array}$$
:$$z^n=\displaystyle-\left[\sum_{k=0}^{\lfloor (n-2)/2\rfloor}\binom{n-k-2}{k}r^{n-2k-2}l^{k}\right]l+\left[\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}r^{n-2k-1}l^{k}\right]z$$
 
  
 +
 +
ちなみに、この数列の一般項は次の通りである。
 +
 +
 +
:$$\displaystyle S_{n}=\frac{\displaystyle\left(r+\sqrt{r^2-4l}\right)^n-\left(r-\sqrt{r^2-4l}\right)^n}{\displaystyle2^n\sqrt{r^2-4l}}=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}r^{n-2k-1}l^{k}$$
 +
 +
 +
 +
===絶対値が1のケース===
 +
 +
$$z=e^{i\theta}$$ である場合、$$l=1,~r=2\cos\theta$$ であることから
  
  
特に $$z=e^{i\theta}$$ のとき、$$l=1,~r=2\cos\theta$$ であることから
+
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-1\\1&2\cos\theta\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2\cos\theta&-1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列
  
  
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-1\\1&2\cos\theta\end{pmatrix}^n\\
+
:$$\begin{cases}
~または~\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2\cos\theta&-1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}
 
~すなわち~\begin{cases}
 
 
S_0=0\\
 
S_0=0\\
 
S_1=1\\
 
S_1=1\\
S_{n}=-(S_{n-2})+(S_{n-1})(2\cos\theta)
+
S_{n}=-(S_{n-2})+(2\cos\theta)(S_{n-1})
\end{cases}~として$$
+
\end{cases}~$$
 +
 
  
 +
を用いて
  
  
:$$z^n=C_{n}+S_{n}z=-(S_{n-1})+S_{n}\\$$
+
:$$z^n=C_{n}+S_{n}z=-(S_{n-1})+(S_{n})z\\$$
 
:$$\begin{array}{l}
 
:$$\begin{array}{l}
 
z^1&=0+z&\\
 
z^1&=0+z&\\
55行目: 68行目:
 
&\quad\quad\quad\vdots\\
 
&\quad\quad\quad\vdots\\
 
\end{array}$$
 
\end{array}$$
:$$z^n=\displaystyle-\left[\sum_{k=0}^{\lfloor (n-2)/2\rfloor}\binom{n-k-2}{k}(-1)^k(2\cos\theta)^{n-2k-2}\right]+\left[\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}(-1)^k(2\cos\theta)^{n-2k-1}\right]z$$
+
 
 +
 
 +
と表せる。この場合の数列の一般項は次の通りである。
 +
 
 +
 
 +
:$$\displaystyle S_{n}=\frac{\displaystyle\left(\cos\theta+\sqrt{\cos^2\theta-1}\right)^n-\left(\cos\theta-\sqrt{\cos^2\theta-1}\right)^n}{\displaystyle2\sqrt{\cos^2\theta-1}}\left(=\frac{\sin n\theta}{\sin\theta}\right)=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}(-1)^k(2\cos\theta)^{n-2k-1}$$
 +
 
 +
 
 +
 
  
  
64行目: 85行目:
 
z^2=&z\cdot z\\
 
z^2=&z\cdot z\\
 
=&(-\bar{z}+\bar{z}+z)z\\
 
=&(-\bar{z}+\bar{z}+z)z\\
=&-\bar{z}\cdotp z+(\bar{z}+z)z\\
+
=&-(\bar{z}\cdotp z)+(\bar{z}+z)z\\
 
\end{align*}
 
\end{align*}
  
85行目: 106行目:
  
  
==応用==
 
===ガラパゴ三辺比定理===
 
ユークリッド平面上の三角形 $$\triangle OAB$$ において、長さが $$x$$ の辺 $$OA$$ と 長さが $$y$$ の辺 $$AB$$ の成す内角が $$\angle A=\theta~\mathrm{rad}$$ である場合、辺 $$OB$$ を $$O$$ を中心として $$\angle O$$ の偶数倍回転させ、それに伴って各辺の長さを伸縮(負数倍も可)して得られる新たな三角形の三辺比は $$x$$、$$y$$、$$r=2\cos\theta$$ の整式で表せるという定理である。本定理を用いることで容易に導出できるが、詳しくは[[ガラパゴ三辺比定理]]を参照のこと。
 
  
 +
==実数の累乗==
 +
 +
$$z^2=-l+rz$$ の解 $$z=\frac{r}2\pm\sqrt{\left(\frac{r}2\right)^2-l}$$ は、例えば $$z=\frac{r}2\mp i\sqrt{-\left[\left(\frac{r}2\right)^2+l\right]}$$ のように解釈しても
 +
 +
:$$l=\bar{z}\cdot z$$
 +
:$$r=\bar{z}+z$$
 +
 +
を得ることができる。
 +
 +
 +
一般に、$$z=a+b=a-i\sqrt{-b^2}$$ と任意に解釈しても
 +
 +
:$$l=\bar{z}\cdot z=a^2-b^2$$
 +
:$$r=\bar{z}+z=2a$$
 +
 +
であり、$$z^2=-(a^2-b^2)+2az$$ は $$z=a+b$$ において真である。
 +
 +
 +
また、
 +
 +
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-(a^2-b^2)\\1&2a\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2a&-(a^2-b^2)\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列
 +
 +
 +
:$$\begin{cases}
 +
S_0=0\\
 +
S_1=1\\
 +
S_{n}=-(a^2-b^2)(S_{n-2})+2a(S_{n-1})
 +
\end{cases}$$
 +
 +
 +
を用いて、一般項が $$S_{n}=\frac{\displaystyle(a+b)^n-(a-b)^n}{\displaystyle2b}$$ となることからも
 +
 +
 +
 +
:$$\begin{array}{rl}
 +
z^n=&C_{n}+S_{n}z\\
 +
=&-(a^2-b^2)(S_{n-1})+(a+b)(S_{n})\\
 +
=&\displaystyle\frac{(a+b)[(a+b)^n-(a-b)^n]-(a^2-b^2)[(a+b)^{n-1}-(a-b)^{n-1}]}{2b}\\
 +
z=&a+b~より\\
 +
z^{n-1}=&\displaystyle\frac{[(a+b)^n-(a-b)^n]-(a-b)[(a+b)^{n-1}-(a-b)^{n-1}]}{2b}\\
 +
z^n=&\displaystyle\frac{[(a+b)^{n+1}-(a-b)^{n+1}]-(a-b)[(a+b)^n-(a-b)^n]}{2b}\\
 +
=&\displaystyle\frac{[(a+b)^{n+1}-(a-b)^{n+1}]-[(a-b)(a+b)^n-(a-b)^{n+1}]}{2b}\\
 +
=&\displaystyle\frac{(a+b)^{n+1}-(a-b)(a+b)^n}{2b}\\
 +
=&\displaystyle\frac{(a+b)^n[(a+b)-(a-b)]}{2b}\\
 +
=&(a+b)^n
 +
\end{array}$$
 +
 +
 +
と真であることが確認できる。
  
===ガラパゴ三角関数===
 
$$+1$$ と $$z=e^{i\theta}$$ を理論上の基底の元($$z$$ が実数であっても独立した元であるものとみなして区別)とする斜交座標系において、極座標 $$e^{xz}$$ の示す座標の実部と $$z$$ 部を得る関数として次のような等式を想定する。
 
  
 +
このことは、複素共役の捉え方を変えることで実数の累乗にも応用可能であることを示している。
  
:$$e^{xz}=\cos_zx+z\sin_zx$$
 
  
  
これらの関数 $$\cos_zx$$ と $$\sin_zx$$ のマクローリン展開形は、本定理によって示すことが可能である。詳しくは[[ガラパゴ三角関数]]を参照のこと。
+
===黄金数とフィボナッチ数列===
  
  
==黄金数・フィボナッチ数列など二項間漸化式との関係性==
+
黄金数を $$\displaystyle z=\phi=\frac{1+\sqrt5}2=\frac12-\frac{\sqrt{-5}}{2}i$$ とみなして解釈するならば
黄金数を $$\displaystyle z=\phi=\frac{1+\sqrt5}2=:\frac12-\frac{\sqrt{-5}}{2}i$$ と解釈して本定理を適用すると
 
  
  
 
:$$l=\left(\frac12+\frac{\sqrt{-5}}2i\right)\left(\frac12-\frac{\sqrt{-5}}2i\right)=\left(\frac14+\frac{-5}4\right)=-1$$
 
:$$l=\left(\frac12+\frac{\sqrt{-5}}2i\right)\left(\frac12-\frac{\sqrt{-5}}2i\right)=\left(\frac14+\frac{-5}4\right)=-1$$
:$$r=2\times\frac12=1$$
+
:$$r=\left(\frac12+\frac{\sqrt{-5}}2i\right)+\left(\frac12-\frac{\sqrt{-5}}2i\right)=1$$
 +
 
 +
 
 +
であるため、
  
  
であるため、本定理に従って
+
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&1\\1&1\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}1&1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる
  
  
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&1\\1&1\end{pmatrix}^n\\
+
数列 $$\begin{cases}
~または~\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}1&1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}
 
~すなわち~\begin{cases}
 
 
S_0=0\\
 
S_0=0\\
 
S_1=1\\
 
S_1=1\\
 
S_{n}=(S_{n-2})+(S_{n-1})
 
S_{n}=(S_{n-2})+(S_{n-1})
\end{cases}$$
+
\end{cases}$$ または
 +
 
 +
 
 +
一般項 $$S_{n}=\frac{\displaystyle\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{\displaystyle2^n\sqrt{5}}$$
  
  
という数列を用いた漸化式を想定できる。
+
を用いて
  
  
:$$z^n=C_{n}+S_{n}=S_{n-1}+S_{n}z$$
+
:$$z^n=C_{n}+S_{n}z=(S_{n-1})+(S_{n})z\\$$
  
  
この $$S_n$$ はフィボナッチ数列と同一であり、黄金数とフィボナッチ数列の関係式
+
が導かれる。この $$S_n$$ と $$z^n$$ は黄金数とフィボナッチ数列の関係式
  
  
 +
:$$\displaystyle F_n=\frac{\phi^n-(-\phi)^{-n}}{\sqrt{5}}$$
 
:$$\phi^n=F_n\phi+F_{n-1}$$
 
:$$\phi^n=F_n\phi+F_{n-1}$$
  
  
とも一致する。
+
と同一であることが分かる。
  
  
一般に、$$z^2=C+Sz$$ の解 を $$z=\frac{S}2\pm\sqrt{\left(\frac{S}2\right)^2+C}:=$$ と解釈する場合、
 
  
:$$l=\bar{z}\cdot z=-C$$
+
==応用==
:$$r=\bar{z}+z=S$$
+
===ガラパゴ三辺比定理===
 +
ユークリッド平面上の三角形 $$\triangle OAB$$ において、長さが $$x$$ の辺 $$OA$$ と 長さが $$y$$ の辺 $$AB$$ の成す内角が $$\angle A=\theta~\mathrm{rad}$$ である場合、辺 $$OB$$ を $$O$$ を中心として $$\angle O$$ の偶数倍回転させ、それに伴って各辺の長さを伸縮(負数倍も可)して得られる新たな三角形の三辺比は $$x$$、$$y$$$$r=2\cos\theta$$ の整式で表せるという定理である。本定理を用いることで容易に導出できるが、詳しくは[[ガラパゴ三辺比定理]]を参照のこと。
  
  
であるため、本定理に従って
+
===ガラパゴ三角関数===
 +
$$+1$$ と $$z=e^{i\theta}$$ を理論上の基底の元($$z$$ が実数であっても独立した元であるものとみなして区別)とする斜交座標系において、極座標 $$e^{xz}$$ の示す座標の実部と $$z$$ 部を得る関数として次のような等式を想定する。
  
  
$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&C\\1&S\end{pmatrix}^n\\
+
:$$e^{xz}=\cos_zx+z\sin_zx$$
~または~\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}S&C\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}
 
~すなわち~\begin{cases}
 
S_0=0\\
 
S_1=1\\
 
S_{n}=(S_{n-2})C+(S_{n-1})S
 
\end{cases}$$
 
  
  
より $$S_{n}=(S_{n-2})C+(S_{n-1})S$$ という二項間漸化式からなる数列が現れることがわかる。
+
これらの関数 $$\cos_zx$$ と $$\sin_zx$$ は、本定理と非常に密接な関係にある。詳しくは[[ガラパゴ三角関数]]を参照のこと。

2020年11月26日 (木) 13:06時点における版

ガラパゴ累乗定理(ガラパゴるいじょうていり)とは、複素数 $$z$$ の累乗は $$l=\bar{z}\cdotp z=|z|^2$$ と $$r=\bar{z}+z$$ を用いた漸化式より得られる数列を用いて $$+1$$ と $$z$$ の一次結合の形で表せるという定理である。

ガラパゴ数学の主定理の一つで、$$+1$$ と $$+z$$ を基底の元とする $$\mathbb{R}^2$$ 斜交平面上の幾何を扱うことを主目的として みゆ によって導出された。

実数1と複素数Zを基底の元とするR²のイメージ


概要

複素数 $$z$$ の 整数 $$n$$ 乗は、$$l=\bar{z}\cdotp z=|z|^2$$ と $$r=\bar{z}+z=2\mathrm{Re}(z)$$ を用いて次のように表せる。


$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-l\\1&r\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}r&-l\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列


$$\begin{cases} S_0=0\\ S_1=1\\ S_{n}=-l(S_{n-2})+r(S_{n-1}) \end{cases}$$


を用いて


$$z^n=C_{n}+S_{n}z=-l(S_{n-1})+(S_{n})z\\$$
$$\begin{array}{l} z^1=&0+z\\ z^2=&-l+rz\\ z^3=&-rl+(-l+r^2)z\\ z^4=&-(-l+r^2)l+(-2rl+r^3)z\\ z^5=&-(-2rl+r^3)l+(-3r^2l+l^2+r^4)z\\ &\quad\quad\quad\vdots\\ \end{array}$$


ちなみに、この数列の一般項は次の通りである。


$$\displaystyle S_{n}=\frac{\displaystyle\left(r+\sqrt{r^2-4l}\right)^n-\left(r-\sqrt{r^2-4l}\right)^n}{\displaystyle2^n\sqrt{r^2-4l}}=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}r^{n-2k-1}l^{k}$$


絶対値が1のケース

$$z=e^{i\theta}$$ である場合、$$l=1,~r=2\cos\theta$$ であることから


$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-1\\1&2\cos\theta\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2\cos\theta&-1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列


$$\begin{cases} S_0=0\\ S_1=1\\ S_{n}=-(S_{n-2})+(2\cos\theta)(S_{n-1}) \end{cases}~$$


を用いて


$$z^n=C_{n}+S_{n}z=-(S_{n-1})+(S_{n})z\\$$
$$\begin{array}{l} z^1&=0+z&\\ z^2&=-1+rz&=-1+(2\cos\theta)z\\ z^3&=-r+(-1+r^2)z&=-(2\cos\theta)+[(2\cos\theta)^2-1]z\\ z^4&=-(-1+r^2)+(-2r+r^3)z&=-[(2\cos\theta)^2-1]+[(2\cos\theta)^3-2(2\cos\theta)]z\\ z^5&=-(-2r+r^3)+(-3r^2+1+r^4)z&=-[(2\cos\theta)^3-2(2\cos\theta)]+[(2\cos\theta)^4-3(2\cos\theta)^2+1]z\\ &\quad\quad\quad\vdots\\ \end{array}$$


と表せる。この場合の数列の一般項は次の通りである。


$$\displaystyle S_{n}=\frac{\displaystyle\left(\cos\theta+\sqrt{\cos^2\theta-1}\right)^n-\left(\cos\theta-\sqrt{\cos^2\theta-1}\right)^n}{\displaystyle2\sqrt{\cos^2\theta-1}}\left(=\frac{\sin n\theta}{\sin\theta}\right)=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}(-1)^k(2\cos\theta)^{n-2k-1}$$



導出

$$\{z\in\mathbb{C}\}$$ において、$$\mathbb{R}^2$$ 上の複素数 $$z$$ を次のように二乗する。

\begin{align*} z^2=&z\cdot z\\ =&(-\bar{z}+\bar{z}+z)z\\ =&-(\bar{z}\cdotp z)+(\bar{z}+z)z\\ \end{align*}

ここで、$$l=\bar{z}\cdotp z,~r=(\bar{z}+z)$$ と置くと

\begin{align*} z^2=-l+rz \end{align*}

両辺に $$z$$ を乗じると $$z^3=-lz+rz^2$$ となり、右辺に $$z^2=-l+rz$$ を代入することで一次結合の形へと変形できる。この操作を再帰的に繰り返すことで、任意の整数乗を同形へと帰結させられる。※この導出手順は、分配則や結合則を満たし共役同士の和と積を求めることができる数(四元数など)であれば $$z\in\mathbb{C}$$ の範囲に限らず適用可能であることを示している。


この $$z^2=-l+rz$$ は $$+1$$ と $$z$$ を基底の元とする斜交座標形式の複素数であり、$$z^2$$ の指し示す座標は $$(-l,r)$$、それぞれの元の指し示す座標は $$(1,0)$$ と $$(0,1)$$ である。ここで $$z$$ と $$z^2$$ を基底の元とする新たな斜交座標系を想定するとそれぞれの元が指し示す座標は旧座標系で $$(0,1)$$ と $$(-l,r)$$ であるため、基底は $$\begin{pmatrix}0&-l\\1&r\end{pmatrix}$$ と表される。旧座標系の基底と比べると原点を中心に $$\mathrm{Arg}~z~(\mathrm{rad})$$ 傾いた姿勢をとっているため、これを累乗することで任意の指数における基底の元の座標を得る。(ガラパゴ数学の乗算の項を参照)


幾何イメージ

複素平面上の $$0$$ を始点とし $$+1$$ を終点とする位置ベクトル $$\vec{s}$$ と、同じく $$0$$ を始点とし任意の複素数 $$z$$ を終点とする位置ベクトル $$\vec{t}$$ において、原点を中心として $$\vec{s}$$ と $$\vec{t}$$ の成す角度の整数倍だけ $$\vec{t}$$ を回転させて得られる新たな位置ベクトル $$\vec{t'}$$ は、$$\vec{s}$$ と $$\vec{t}$$ を基底の元とするベクトル空間上の1次結合の形で表現可能である。

ガラパゴ累乗定理のイメージ


実数の累乗

$$z^2=-l+rz$$ の解 $$z=\frac{r}2\pm\sqrt{\left(\frac{r}2\right)^2-l}$$ は、例えば $$z=\frac{r}2\mp i\sqrt{-\left[\left(\frac{r}2\right)^2+l\right]}$$ のように解釈しても

$$l=\bar{z}\cdot z$$
$$r=\bar{z}+z$$

を得ることができる。


一般に、$$z=a+b=a-i\sqrt{-b^2}$$ と任意に解釈しても

$$l=\bar{z}\cdot z=a^2-b^2$$
$$r=\bar{z}+z=2a$$

であり、$$z^2=-(a^2-b^2)+2az$$ は $$z=a+b$$ において真である。


また、

$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-(a^2-b^2)\\1&2a\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}2a&-(a^2-b^2)\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる数列


$$\begin{cases} S_0=0\\ S_1=1\\ S_{n}=-(a^2-b^2)(S_{n-2})+2a(S_{n-1}) \end{cases}$$


を用いて、一般項が $$S_{n}=\frac{\displaystyle(a+b)^n-(a-b)^n}{\displaystyle2b}$$ となることからも


$$\begin{array}{rl} z^n=&C_{n}+S_{n}z\\ =&-(a^2-b^2)(S_{n-1})+(a+b)(S_{n})\\ =&\displaystyle\frac{(a+b)[(a+b)^n-(a-b)^n]-(a^2-b^2)[(a+b)^{n-1}-(a-b)^{n-1}]}{2b}\\ z=&a+b~より\\ z^{n-1}=&\displaystyle\frac{[(a+b)^n-(a-b)^n]-(a-b)[(a+b)^{n-1}-(a-b)^{n-1}]}{2b}\\ z^n=&\displaystyle\frac{[(a+b)^{n+1}-(a-b)^{n+1}]-(a-b)[(a+b)^n-(a-b)^n]}{2b}\\ =&\displaystyle\frac{[(a+b)^{n+1}-(a-b)^{n+1}]-[(a-b)(a+b)^n-(a-b)^{n+1}]}{2b}\\ =&\displaystyle\frac{(a+b)^{n+1}-(a-b)(a+b)^n}{2b}\\ =&\displaystyle\frac{(a+b)^n[(a+b)-(a-b)]}{2b}\\ =&(a+b)^n \end{array}$$


と真であることが確認できる。


このことは、複素共役の捉え方を変えることで実数の累乗にも応用可能であることを示している。


黄金数とフィボナッチ数列

黄金数を $$\displaystyle z=\phi=\frac{1+\sqrt5}2=\frac12-\frac{\sqrt{-5}}{2}i$$ とみなして解釈するならば


$$l=\left(\frac12+\frac{\sqrt{-5}}2i\right)\left(\frac12-\frac{\sqrt{-5}}2i\right)=\left(\frac14+\frac{-5}4\right)=-1$$
$$r=\left(\frac12+\frac{\sqrt{-5}}2i\right)+\left(\frac12-\frac{\sqrt{-5}}2i\right)=1$$


であるため、


$$\begin{pmatrix}C_{n}&C_{n+1}\\S_{n}&S_{n+1}\end{pmatrix}=\begin{pmatrix}0&1\\1&1\end{pmatrix}^n$$ あるいは $$\begin{pmatrix}S_{n+1}\\S_{n}\end{pmatrix}=\begin{pmatrix}1&1\\1&0\end{pmatrix}^n\begin{pmatrix}1\\0\end{pmatrix}$$ より得られる


数列 $$\begin{cases} S_0=0\\ S_1=1\\ S_{n}=(S_{n-2})+(S_{n-1}) \end{cases}$$ または


一般項 $$S_{n}=\frac{\displaystyle\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{\displaystyle2^n\sqrt{5}}$$


を用いて


$$z^n=C_{n}+S_{n}z=(S_{n-1})+(S_{n})z\\$$


が導かれる。この $$S_n$$ と $$z^n$$ は黄金数とフィボナッチ数列の関係式


$$\displaystyle F_n=\frac{\phi^n-(-\phi)^{-n}}{\sqrt{5}}$$
$$\phi^n=F_n\phi+F_{n-1}$$


と同一であることが分かる。


応用

ガラパゴ三辺比定理

ユークリッド平面上の三角形 $$\triangle OAB$$ において、長さが $$x$$ の辺 $$OA$$ と 長さが $$y$$ の辺 $$AB$$ の成す内角が $$\angle A=\theta~\mathrm{rad}$$ である場合、辺 $$OB$$ を $$O$$ を中心として $$\angle O$$ の偶数倍回転させ、それに伴って各辺の長さを伸縮(負数倍も可)して得られる新たな三角形の三辺比は $$x$$、$$y$$、$$r=2\cos\theta$$ の整式で表せるという定理である。本定理を用いることで容易に導出できるが、詳しくはガラパゴ三辺比定理を参照のこと。


ガラパゴ三角関数

$$+1$$ と $$z=e^{i\theta}$$ を理論上の基底の元($$z$$ が実数であっても独立した元であるものとみなして区別)とする斜交座標系において、極座標 $$e^{xz}$$ の示す座標の実部と $$z$$ 部を得る関数として次のような等式を想定する。


$$e^{xz}=\cos_zx+z\sin_zx$$


これらの関数 $$\cos_zx$$ と $$\sin_zx$$ は、本定理と非常に密接な関係にある。詳しくはガラパゴ三角関数を参照のこと。