$$\begin{pmatrix}S_C_{n+1}&S_C_{n+1}\\C_S_{n+1}&C_S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-z+\cdotp\bar{z}&1\\-1&z\cdotp+\bar{z}&0\end{pmatrix}^n=\begin{pmatrix}r0&1-l\\-l1&0r\end{pmatrix}^n$$ より得られる数列
$$\begin{pmatrix}S_C_{n+1}&S_C_{n+1}\\C_S_{n+1}&C_S_{n+1}\end{pmatrix}=\begin{pmatrix}0&-z+\cdotp\bar{z}&1\\-1&z\cdotp+\bar{z}&0\end{pmatrix}^n=\begin{pmatrix}2\cos\theta0&-1\\-1&02\cos\theta\end{pmatrix}^n$$ より得られる数列