この $$z^2=-l+rz$$ は $$+1$$ と $$z$$ を基底の元とする斜交座標形式の複素数であり、$$z^2$$ の指し示す座標は $$(-l,r)$$、それぞれの元の指し示す座標は $$(1,0)$$ と $$(0,1)$$ である。ここで $$z$$ と $$z^2$$ を基底の元とする新たな斜交座標系を想定するとそれぞれの元が指し示す座標は旧座標系で $$(0,1)$$ と $$(-l,r)$$ であるため、基底は $$\begin{pmatrix}0&-l\\1&r\end{pmatrix}$$ と表される。旧座標系の基底と比べると原点を中心に $$\mathrm{Arg}~z~(\mathrm{rad})$$ 傾いた姿勢をとっているため、これを累乗することで任意の指数における基底の元の座標を得る。傾いた姿勢をとっているため、これを累乗することで任意の指数における基底の元の座標を得る。([[ガラパゴ数学]]の乗算の項を参照)