三次関数の極値

提供: 数学を愛する会Wiki
2019年12月8日 (日) 10:13時点における天輝主 (トーク | 投稿記録)による版 (→‎中級)
ナビゲーションに移動 検索に移動

三次関数\[y=f(x)\]の極値を考える。

すなわち \begin{cases} y=f(x)\quad(三次式)\\ 0=f'(x)\quad(二次式) \end{cases} となる $$(x,y)$$ を求めることになる。

初級

$$f(x)$$ は三次式、 $$f'(x)$$ は二次式 であるので \[f(x)=(一次式)\cdot f'(x)+ax+b\] と割り算によって変形ができる。

二次方程式 $$f'(x)=0$$ の解は簡単に求まるが、この解を代入するに当たり、上の式は一次式ほどの労力しか要しない。

よって比較的簡単に極値を求めることができる。

$$f'(x)=0$$ の解を $$\alpha$$ として、極値 $$y$$ は \[y=a\cdot\alpha + b\] となる。

中級

$$x$$ の二次方程式 $$f(x)=0$$ の解を $$\alpha,\beta$$ とおく。

三次関数の五点定理を用いると、 \[\frac{f(\alpha)+f(\beta)}2 =f\left(\frac{\alpha+\beta}2\right)\]