\( A = \{ 1, 2, 3 \} \)上の関係\( C \)を\( \{ (1,1), (2,1), (2,2), (3,1), (3,2), (3,3) \} \)とすると、\( C \)は反射性、反対称性、推移性、比較可能性の全てを満たすので、\( \langle A , C \rangle \)は全順序集合である。
\( \mathbb{R} \)上の関係\( L \)を\( \{ (x,y) \mid x \leq y \} \)で定義すると、とすると、\( L \)は反射性、反対称性、推移性、比較可能性の全てを満たすので、\( \langle \mathbb{R} , L \rangle \)は全順序集合である。
全順序集合は\( \leq \)や\( \geq \)に似たものだと思えばわかりやすい。実際、3番目の例は\( \geq \)、4番目の例は\( \leq \)に対応している。
$$ \{ (x,y) \mid 「y = 0」 または 「x \neq 0 かつ x \leq y」 \} $$
この関係は、\( 1R2, 2R3, 3R4, \cdots \)かつ\( 1R0, 2R0, 3R0, \cdots \)という式を満たす。すなわち、「基本的には普通の大小関係だが、\( 0 \)だけは例外的に一番大きいとみなす」という大小関係における\( \leq \)の関係であると言える。の関係であると言える。すなわち、次のような序列が成り立っている。 $$ 1R2R3R4 \cdots \cdots R0 $$ \( \geq \)は「要素の符号を反転させたときの\( \leq \)」とみなせるので、以下では全順序集合の関係として\( \leq \)のようなものを想定する。しかし、\( \geq \)も全順序集合の関係になりうることに注意されたい。
===第4節 整列集合===
全順序集合\( \langle T, R \rangle \)が整列集合であるとは、どんな\( T \)の部分集合\( S \)に対しても、その中に「どんな\( s \in S \)に対しても\( m R s \)となるような\( m \)」が存在することである。
もし\( R \)を\( \leq \)だと思えば、「」内は単に「\( S \)の最小値」と言い換えられる。
以下に例を示す。
\( A = \{ 1, 2, 3 \} \)上の関係\( X \)を\( \{ (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) \} \)とすると、\( a X b \)は\( a \leq b \)と同値であり、\( A \)のどんな部分集合に対しても最小値が存在するので、\( \langle A, X \rangle \)は全順序集合である。
\( \mathbb{R} \)上の関係\( L \)を\( \{ (x,y) \mid x \leq y \} \)とすると、\( aLb \)は\( a \leq b \)と同値であるが、\( \mathbb{R} \)の部分集合の中には最小値が存在しないものが存在するので、\( \langle \mathbb{R}, L \rangle \)は全順序集合ではない。
実際、\( \mathbb{N} \)上の関係\( R \)を\( \{ (x,y) \mid 「y = 0」 または 「x \neq 0 かつ x \leq y」 \} \)とすると、\( a R b \)は\( a \leq b \)と同値ではないが、\( \mathbb{N} \)のどんな部分集合にも\( 1R2R3R4 \cdots \cdots R0 \)という特殊な大小関係の下での最小値は存在するので、全順序集合である。
===第5節 推移的集合===