\end{align*}
両辺に $$z$$ を乗じると $$z^3=-lz+rz^2$$ となり、右辺に $$z^2=-l+rz$$ を代入することで一次結合の形へと変形できる。この操作を再帰的に繰り返し、任意の整数乗を同形へと帰結させることで漸化式を得る。を代入することで一次結合の形へと変形できる。この操作を再帰的に繰り返すことで、任意の整数乗を同形へと帰結させられる。※この導出手順は、分配則や結合則を満たし共役同士の和と積を求めることができる数(四元数など)であれば $$z\in\mathbb{C}$$ の範囲に限らず適用可能であることを示している。 この $$z^2=-l+rz$$ は $$+1$$ と $$z$$ を基底の元とする斜交座標形式の複素数であり、$$z^2$$ の指し示す座標は $$(-l,r)$$、それぞれの元の指し示す座標は $$(1,0)$$ と $$(0,1)$$ である。ここで $$z$$ と $$z^2$$ を基底の元とする新たな斜交座標系を想定するとそれぞれの元が指し示す座標は旧座標系で $$(0,1)$$ と $$(-l,r)$$ であるため、基底は $$\begin{pmatrix}0&-l\\1&r\end{pmatrix}$$ と表される。旧座標系の基底と比べると原点を中心に $$\mathrm{Arg}~z~(\mathrm{rad})$$ 傾いた姿勢をとっているため、これを累乗することで任意の指数における基底の元の座標を得る。
またこの導出手順は、分配則や結合則を満たし共役同士の和と積を求めることができる数(四元数など)であれば $$z\in\mathbb{C}$$ の範囲に限らず適用可能であることを示している。
==幾何への応用==