メインメニューを開く

差分

ガラパゴ三辺比定理

1 バイト追加, 2020年2月2日 (日) 07:57
編集の要約なし
'''ガラパゴ三辺比定理'''(ガラパゴさんぺんひていり)とは、ユークリッド平面上の三角形 $$\triangle OAB$$ において、長さが $$x$$ の辺 $$OA$$ と 長さが $$y$$ の辺 $$AB$$ の成す内角が $$\angle A=\theta~\mathrm{rad}$$ である場合、辺 $$OB$$ を $$O$$ を中心として $$\angle O$$ の偶数倍回転させ、それに伴って各辺の長さを伸縮(負数倍も可)して得られる新たな三角形の三辺比は $$x$$、$$y$$、$$cr=2\cos\theta$$ の整式で表せるという定理である。
[[ガラパゴ数学]]の主定理の一つで、[[みゆ]] により考案された。特に $$\theta=\frac{\pi}{2}~\mathrm{rad}$$ の場合は'''ピタゴラスの定理II'''、'''ピタツー'''などの愛称で呼ばれることもあり、整数の性質を扱うときは主にそちらが用いられる。