が存在するからである。同様に、\( O_{\omega+2}, O_{\omega2} \)なども基数ではない。
一方、基数は\( O_0, O_1, O_2, \cdots, O_{\omega} \)で終わりかというとそうではなく、各濃度に対して1つ基数が存在する。 濃度\( \aleph_1 \)に対応する基数を[大草の炒め物を挿入https://googology.wikia.org/ja/wiki/%E7%AC%AC%E4%B8%80%E9%9D%9E%E5%8F%AF%E7%AE%97%E9%A0%86%E5%BA%8F%E6%95%B0 第一非可算順序数]といい、\( \Omega \)や\( \omega_1 \)で表す。 同様に、\( \aleph_2, \aleph_3 \cdots \)に対して\( \Omega_2, \Omega_3, \cdots \)が存在する。また、\( \aleph_{\omega} \)に対応する基数は\( \Omega_{\omega} \)である。 \( \Omega \)は順序数であるから、\( \aleph_{\Omega} \)という濃度が存在し、それに伴って\( \Omega_{\Omega} \)も存在する。一般に、任意の順序数\( \alpha \)に対して基数\( \Omega_{\alpha} \)が存在する。
[共終数の定義と例を挿入]