8,302 バイト追加,
2019年9月13日 (金) 22:14 '''ガラパゴ三角関数'''(ガラパゴさんかくかんすう)とは、$$+1$$ と $$z=e^{i\theta}$$ を理論上の基底の元($$z$$ が実数であっても独立した元であるものとみなして区別)とする斜交座標系において、関数 $$f(x)=e^{xz}$$ が示す座標の実部と $$z$$ 部を得る関数である。
実部を得る関数($$N\in\mathbb{Z}$$)
:$$\cos(x,\frac{\theta}{2\pi})=\begin{cases}
e^x&(\theta=2N\pi)\\
\cosh x&(\theta=(2N+1)\pi)\\
\displaystyle e^{x\cos\theta}\cos(x\sin\theta)-\frac{e^{x\cos\theta}\sin(x\sin\theta)}{\tan\theta}&(\theta\ne N\pi)
\end{cases}$$
$$z$$ 部を得る関数($$N\in\mathbb{
Z}$$)
:$$\sin(x,\frac{\theta}{2\pi})=\begin{cases}0&(\theta=2N\pi)\\
\sinh x&(\theta=(2N+1)\pi)\\
\displaystyle \frac{e^{x\cos\theta}\sin(x\sin\theta)}{\sin\theta}&(\theta\ne N\pi)
\end{cases}$$
関係式
:$$e^{xz}=\cos(x,\frac{\theta}{2\pi})+z\sin(x,\frac{\theta}{2\pi})$$
:$$e^{xz}=e^{xe^{i\theta}}=e^{x(\cos\theta+i\sin\theta)}=e^{x\cos\theta}\cdot e^{ix\sin\theta}$$ より、この関数の示す値は
::偏角: $$\arg(e^{xz})=x\sin\theta~(\mathrm{rad})$$
::絶対値: $$|e^{xz}|=e^{x\cos\theta}$$
:である。
==導出==
$$+1$$ と $$z=e^{i\theta}$$ を(理論上の)基底の元とする斜交座標形式の複素数平面において、関数 $$f(x)=e^{xz}$$ を想定する。
'''$$\frac{\theta}{2\pi}$$ が有理数 $$\frac{m}{n}$$ の場合'''
$$z=e^{\frac{m}{n}\cdot2\pi i}$$ のマクローリン展開より
\begin{align}
e^{xz}
=&\sum_{k=0}^{\infty}\frac{x^k}{k!}z^k\\
=&\sum_{p=0}^{n-1}\sum_{r=0}^{\infty}\frac{x^{nr+p}}{(nr+p)!}z^{nr+p}\quad\color{#f00}{\leftarrow~k=nr+p}\\
=&\underbrace{\sum_{r=0}^{\infty}\frac{x^{nr}}{(nr)!}z^{nr}}_{\color{#f00}{p=0}}+\underbrace{\sum_{r=0}^{\infty}\frac{x^{nr+1}}{(nr+1)!}z^{nr+1}}_{\color{#f00}{p=1}}+\underbrace{\sum_{p=2}^{n-1}\sum_{r=0}^{\infty}\frac{x^{nr+p}}{(nr+p)!}z^{nr+p}}_{\color{#f00}{p\geqq2}}\\
=&\sum_{r=0}^{\infty}\frac{x^{nr}}{(nr)!}+\sum_{r=0}^{\infty}\frac{x^{nr+1}}{(nr+1)!}z^m+\sum_{p=2}^{n-1}\sum_{r=0}^{\infty}\frac{x^{nr+p}}{(nr+p)!}(z^m)^p\end{align}
[[ガラパゴ累乗定理]]により $$(z^m)^p$$ を 実成分と $$z^m$$ 成分に分離
:$$\displaystyle\cos\left(x,\frac{m}{n}\right)=\sum_{r=0}^{\infty}\frac{x^{nr}}{(nr)!}-\sum_{p=2}^{n-1}\sum_{r=0}^{\infty}\frac{x^{nr+p}}{(nr+p)!}\left[\sum_{k=0}^{\lfloor (p-2)/2\rfloor}\binom{p-k-2}{k}(-1)^k\left(2\cos\left(m\theta\right)\right)^{p-2k-2}\right]$$
:$$\displaystyle\sin\left(x,\frac{m}{n}\right)=\sum_{p=1}^{n-1}\sum_{r=0}^{\infty}\frac{x^{nr+p}}{(nr+p)!}\left[\sum_{k=0}^{\lfloor (p-1)/2\rfloor}\binom{p-k-1}{k}(-1)^k\left(2\cos\left(m\theta\right)\right)^{p-2k-1}\right]$$
$$\frac{m}{n}=\frac{1}{1}$$ のとき
:$$\displaystyle\cos\left(x,\frac{1}{1}\right)=\sum_{r=0}^{\infty}\frac{x^{r}}{r!}=e^x$$
:$$\displaystyle\sin\left(x,\frac{1}{1}\right)=0$$
$$\frac{m}{n}=\pm\frac{1}{2}$$ のとき
:$$\displaystyle\cos\left(x,\pm\frac{1}{2}\right)=\sum_{r=0}^{\infty}\frac{x^{2r}}{(2r)!}=\cosh x$$
:$$\displaystyle\sin\left(x,\pm\frac{1}{2}\right)=\sum_{r=0}^{\infty}\frac{x^{2r+1}}{(2r+1)!}=\sinh x$$
$$\frac{m}{n}=\pm\frac{1}{3}$$ のとき($$2\cos\theta=-1$$)
:$$\displaystyle\cos\left(x,\pm\frac{1}{3}\right)=\sum_{r=0}^{\infty}\frac{x^{3r}}{(3r)!}-\sum_{r=0}^{\infty}\frac{x^{3r+2}}{(3r+2)!}$$
:$$\displaystyle\sin\left(x,\pm\frac{1}{3}\right)=\sum_{r=0}^{\infty}\frac{x^{3r+1}}{(3r+1)!}-\sum_{r=0}^{\infty}\frac{x^{3r+2}}{(3r+2)!}$$
$$\frac{m}{n}=\pm\frac{1}{4}$$ のとき($$2\cos\theta=0$$)
:$$\displaystyle\cos\left(x,\pm\frac{1}{4}\right)=\sum_{r=0}^{\infty}\frac{x^{4r}}{(4r)!}-\sum_{r=0}^{\infty}\frac{x^{4r+2}}{(4r+2)!}=\cos x$$
:$$\displaystyle\sin\left(x,\pm\frac{1}{4}\right)=\sum_{r=0}^{\infty}\frac{x^{4r+1}}{(4r+1)!}-\sum_{r=0}^{\infty}\frac{x^{4r+3}}{(4r+3)!}=\sin x$$
'''$$\sin\theta\ne0$$ の場合($$\frac{\theta}{2\pi}$$ が無理数の場合も含む)'''
$$e^{xz}=\cos\left(x,\frac{\theta}{2\pi}\right)+z\sin\left(x,\frac{\theta}{2\pi}\right)$$ の両辺を直交座標形式に変換
左辺
\begin{align}
e^{xz}=&e^{xe^{i\theta}}\\
=&e^{x(\cos\theta+i\sin\theta)}\\
=&e^{x\cos\theta}\cdot e^{ix\sin\theta}\\
=&e^{x\cos\theta}[\cos(x\sin\theta)+i\sin(x\sin\theta)]\\
=&e^{x\cos\theta}\cos(x\sin\theta)+ie^{x\cos\theta}\sin(x\sin\theta)
\end{align}
右辺
\begin{align}
&\textstyle\cos\left(x,\frac{\theta}{2\pi}\right)+z\sin\left(x,\frac{\theta}{2\pi}\right)\\
=&\textstyle\cos\left(x,\frac{\theta}{2\pi}\right)+(\cos\theta+i\sin\theta)\sin\left(x,\frac{\theta}{2\pi}\right)\\
=&\textstyle\left[\cos\left(x,\frac{\theta}{2\pi}\right)+\cos\theta\sin\left(x,\frac{\theta}{2\pi}\right)\right]+i\sin\theta\sin\left(x,\frac{\theta}{2\pi}\right)
\end{align}
$$\sin\theta\ne0$$ であることから両辺の実部と虚部を比較して
:$$\cos(x,\frac{\theta}{2\pi})=\displaystyle e^{x\cos\theta}\cos(x\sin\theta)-\frac{e^{x\cos\theta}\sin(x\sin\theta)}{\tan\theta}$$
:$$\sin(x,\frac{\theta}{2\pi})=\displaystyle \frac{e^{x\cos\theta}\sin(x\sin\theta)}{\sin\theta}$$
==exps関数を用いた表現==
$$\exp$$ 関数をマクローリン展開した各項より、$$x$$ の指数が [$$n$$ の倍数-$$m$$] 以外の係数を $$0$$ とした関数を $$\mathrm{exps}(x,n,m)$$ とする。
\begin{align}
\mathrm{exps}(x,n,m)
=&\left(\sum_{k=0}^\infty\frac{x^{kn}}{(kn)!}\right)^{(m)}\quad\color{#f00}{\leftarrow~(m)~は~m~階微分の意}\\
=&\frac{1}{n}\sum_{k=0}^\infty\left(\left(e^{\frac{m}{n}\cdot2\pi i}\right)^ke^{\left(e^{\frac{2\pi i}{n}}\right)^kx}\right)\\
=&\frac{1}{n}\sum_{k=0}^\infty\left(\exp\left(\frac{2km\pi}{n}i+\exp\left(\frac{2k\pi}{n}i\right)x\right)\right)
\end{align}
この関数を用いると、次のように示すことができる。
\begin{array}{rcrcrcl}
\textstyle\exp(x)&=&\cos\left(x,\frac{1}{1}\right)&&&=&\mathrm{exps}\left(x,1,0\right)\\\\
\textstyle\cosh(x)&=&\cos\left(x,\frac{1}{2}\right)&&&=&\mathrm{exps}\left(x,2,0\right)\\
\textstyle\sinh(x)&=&\sin\left(x,\frac{1}{2}\right)&&&=&\mathrm{exps}\left(x,2,1\right)\\\\
&&\textstyle\cos\left(x,\frac{1}{3}\right)&&&=&\mathrm{exps}\left(x,3,0\right)-\left(x,3,1\right)\\
&&\textstyle\sin\left(x,\frac{2}{3}\right)&=&-\sin\left(x,\frac{1}{3}\right)&=&\mathrm{exps}\left(x,3,1\right)-\left(x,3,2\right)&\\
&&\textstyle-\cos\left(x,\frac{2}{3}\right)&&&=&\mathrm{exps}\left(x,3,2\right)-\left(x,3,0\right)\\
&&\textstyle\cos\left(x,\frac{2}{3}\right)&&&=&\mathrm{exps}\left(x,3,0\right)-\left(x,3,2\right)\\
&&\textstyle-\cos\left(x,\frac{1}{3}\right)&&&=&\mathrm{exps}\left(x,3,1\right)-\left(x,3,0\right)\\
&&\textstyle\sin\left(x,\frac{1}{3}\right)&=&-\sin\left(x,\frac{2}{3}\right)&=&\mathrm{exps}\left(x,3,2\right)-\left(x,3,1\right)\\\\
\textstyle\cos(x)&=&\cos\left(x,\frac{1}{4}\right)&=&\cos\left(x,\frac{3}{4}\right)&=&\mathrm{exps}\left(x,4,0\right)-\left(x,4,2\right)\\
\textstyle-\sin(x)&=&-\sin\left(x,\frac{1}{4}\right)&=&\sin\left(x,\frac{3}{4}\right)&=&\mathrm{exps}\left(x,4,1\right)-\left(x,4,3\right)\\
\textstyle-\cos(x)&=&-\cos\left(x,\frac{1}{4}\right)&=&-\cos\left(x,\frac{3}{4}\right)&=&\mathrm{exps}\left(x,4,2\right)-\left(x,4,0\right)\\
\textstyle\sin(x)&=&\sin\left(x,\frac{1}{4}\right)&=&-\sin\left(x,\frac{3}{4}\right)&=&\mathrm{exps}\left(x,4,3\right)-\left(x,4,1\right)&\\\\
&&\textstyle\cos\left(x,\frac{1}{6}\right)&=&\cos\left(x,\frac{4}{6}\right)&=&\mathrm{exps}\left(x,6,0\right)+\left(x,6,1\right)-\left(x,6,3\right)-\left(x,6,4\right)\\
&&\textstyle-\sin\left(x,\frac{1}{6}\right)&=&\sin\left(x,\frac{4}{6}\right)&=&\mathrm{exps}\left(x,6,1\right)+\left(x,6,2\right)-\left(x,6,4\right)-\left(x,6,5\right)\\
&&\textstyle-\cos\left(x,\frac{2}{6}\right)&=&-\cos\left(x,\frac{5}{6}\right)&=&\mathrm{exps}\left(x,6,2\right)+\left(x,6,3\right)-\left(x,6,5\right)-\left(x,6,0\right)\\
&&\textstyle-\cos\left(x,\frac{1}{6}\right)&=&-\cos\left(x,\frac{4}{6}\right)&=&\mathrm{exps}\left(x,6,3\right)+\left(x,6,4\right)-\left(x,6,0\right)-\left(x,6,1\right)\\
&&\textstyle\sin\left(x,\frac{1}{6}\right)&=&\sin\left(x,\frac{2}{6}\right)&=&\mathrm{exps}\left(x,6,4\right)+\left(x,6,5\right)-\left(x,6,1\right)-\left(x,6,2\right)\\
&&\textstyle\cos\left(x,\frac{2}{6}\right)&=&\cos\left(x,\frac{4}{6}\right)&=&\mathrm{exps}\left(x,6,5\right)+\left(x,6,0\right)-\left(x,6,2\right)-\left(x,6,3\right)\\
\end{array}