メインメニューを開く

差分

ガラパゴ累乗定理

14 バイト追加, 2020年11月24日 (火) 11:32
編集の要約なし
[[ファイル:実数1と複素数Zを基底の元とするR².png |480px|center|border|実数1と複素数Zを基底の元とするR²のイメージ]]
 
== 概要 ==
\end{array}$$
:$$z^n=\displaystyle-\left[\sum_{k=0}^{\lfloor (n-2)/2\rfloor}\binom{n-k-2}{k}(-1)^k(2\cos\theta)^{n-2k-2}\right]+\left[\sum_{k=0}^{\lfloor (n-1)/2\rfloor}\binom{n-k-1}{k}(-1)^k(2\cos\theta)^{n-2k-1}\right]z$$
 
==導出==
 ==幾何への応用幾何イメージ==
複素平面上の $$0$$ を始点とし $$+1$$ を終点とする位置ベクトル $$\vec{s}$$ と、同じく $$0$$ を始点とし任意の複素数 $$z$$ を終点とする位置ベクトル $$\vec{t}$$ において、原点を中心として $$\vec{s}$$ と $$\vec{t}$$ の成す角度の整数倍だけ $$\vec{t}$$ を回転させて得られる新たな位置ベクトル $$\vec{t'}$$ は、$$\vec{s}$$ と $$\vec{t}$$ を基底の元とするベクトル空間上の1次結合の形で表現可能である。
==応用==
===ガラパゴ三辺比定理===
ユークリッド平面上の三角形 $$\triangle OAB$$ において、長さが $$x$$ の辺 $$OA$$ と 長さが $$y$$ の辺 $$AB$$ の成す内角が $$\angle A=\theta~\mathrm{rad}$$ である場合、辺 $$OB$$ を $$O$$ を中心として $$\angle O$$ の偶数倍回転させ、それに伴って各辺の長さを伸縮(負数倍も可)して得られる新たな三角形の三辺比は $$x$$、$$y$$、$$r=2\cos\theta$$ の整式で表せるという定理である。本定理を用いることで容易に導出できるが、詳しくは[[ガラパゴ三辺比定理]]を参照のこと。
 
===ガラパゴ三角関数===
これらの関数 $$\cos_zx$$ と $$\sin_zx$$ のマクローリン展開形は、本定理によって示すことが可能である。詳しくは[[ガラパゴ三角関数]]を参照のこと。
 
==黄金数・フィボナッチ数列との関係性==