質点の方程式
ナビゲーションに移動
検索に移動
質点とみなせる物体の運動は大抵次の式で表現する。 \[\newcommand{\bm}[1]{\boldsymbol{#1}} m\ddot{\bm{x}}=\bm{F}\]
ここで\(m\)は質点の質量(定数)、\(F\)はその質点にかかる合力であり、\(x\)は位置ベクトル(tの関数)である。
例
時刻 \(t=0\) に、質量 \(m\) の質点 \(P\) が原点で静止している。ここで \((mg\cdot\ln(t+1),mg,0)\) の力をかける。 (\(g\)は定数)
時刻tでの\(P\)の座標を\(\bm{x}\)とすると、 \[m\ddot{\bm{x}}=\left( \begin{array}{c} mg\cdot\ln(t+1)\\mg\\0 \end{array}\right) \] \[\ddot{\bm{x}}=\left( \begin{array}{c} g\cdot\ln(t+1)\\g\\0 \end{array}\right) \]