「積分」の版間の差分
ナビゲーションに移動
検索に移動
(→定義) タグ: モバイルウェブ編集、モバイル編集 |
(→定義) タグ: モバイルウェブ編集、モバイル編集 |
||
25行目: | 25行目: | ||
を考える。 | を考える。 | ||
+ | |||
+ | この時、次のように $$M_i$$ と $$m_i$$ を定義する。 | ||
+ | |||
+ | $$\displaystyle{M_i=\sup_{x\in[x_{i-1},x_i]}}$$ |
2019年11月30日 (土) 01:58時点における版
このページは現在編集中です。
積分とは、不定積分と定積分の2種類があり、関数 $$f(x)$$ の原始関数 $$F(x)$$ を求めるものが不定積分といい、
$$\displaystyle{\int f(x)\ dx=F(x)+C}$$
と表す。 なおここで $$C$$ は任意定数を表し、積分定数と呼ぶ。
定積分は、 $$x$$ の区間 $$[a,b]$$ を定め、
$$\displaystyle{\int_a^bf(x)dx=F(b)-F(a)}$$
と定める。 この時、定積分は $$f(x)$$ と $x$ 軸、 $$x=a,\ x=b$$ という線に囲まれた部分の符号付き面積を表す。
厳密にはリーマン積分とルベーグ積分があるが、ここではリーマン積分のことを単に積分と呼ぶ。
定義
有界閉区間 $$[a,b]$$ 上で定義された有界な関数 $$f(x)$$ に対しての定積分を定義する。
$$[a,b]$$ の分割
$$\displaystyle{\Delta:a=x_0<x_1<\cdots<x_{n-1}<x_n=b}$$
を考える。
この時、次のように $$M_i$$ と $$m_i$$ を定義する。
$$\displaystyle{M_i=\sup_{x\in[x_{i-1},x_i]}}$$