「入試「物理」での計算」の版間の差分

提供: 数学を愛する会Wiki
ナビゲーションに移動 検索に移動
タグ: モバイルウェブ編集モバイル編集
タグ: モバイルウェブ編集モバイル編集
7行目: 7行目:
 
==微分方程式==
 
==微分方程式==
 
===斉次線型常微分方程式===
 
===斉次線型常微分方程式===
\(y=f(x)\) として
+
\(y\) は \(x\) の関数とする。
 +
 
 
\[y''+\omega^2y==0\]
 
\[y''+\omega^2y==0\]
 
の一般解は
 
の一般解は
29行目: 30行目:
 
\[a_nx^{n}+a_{n-1}x^{n-1}+\cdots+a_1x+a_0==0\]
 
\[a_nx^{n}+a_{n-1}x^{n-1}+\cdots+a_1x+a_0==0\]
 
の解が \(x=\alpha_n,\alpha_{n-1},\cdots,\alpha_1\) だとして、
 
の解が \(x=\alpha_n,\alpha_{n-1},\cdots,\alpha_1\) だとして、
\[f(x)=A_ne^{\alpha_n x}+
+
\[y=A_ne^{\alpha_n x}+
 
A_{n-1}e^{\alpha_{n-1} x}+\cdots+
 
A_{n-1}e^{\alpha_{n-1} x}+\cdots+
 
A_1e^{\alpha_1 x}\]
 
A_1e^{\alpha_1 x}\]
 
とおける。
 
とおける。

2019年9月6日 (金) 15:07時点における版

これは大学入試と「物理」においてよく使われる計算や数学的知識をまとめたものである。

微積分

\[\newcommand{\bm}[1]{\boldsymbol{#1}} \int \ddot{\bm{y}}\cdot d\bm{y} = \frac12 |\dot{\bm{y}}|^2 + \text{const.}\]

微分方程式

斉次線型常微分方程式

\(y\) は \(x\) の関数とする。

\[y''+\omega^2y==0\] の一般解は \begin{eqnarray*} y &=& A\cos\omega x +B\sin\omega x\\ &=& C\cos(\omega x+\theta) \end{eqnarray*} とおける。


また、 \[y''-\omega^2y==0\] の一般解は \begin{eqnarray*} y &=& Ae^{\omega x} +Be^{-\omega x} \end{eqnarray*} とおける。


一般に \[a_ny^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_0y==0\] の一般解は、 \[a_nx^{n}+a_{n-1}x^{n-1}+\cdots+a_1x+a_0==0\] の解が \(x=\alpha_n,\alpha_{n-1},\cdots,\alpha_1\) だとして、 \[y=A_ne^{\alpha_n x}+ A_{n-1}e^{\alpha_{n-1} x}+\cdots+ A_1e^{\alpha_1 x}\] とおける。