「質点の方程式」の版間の差分

提供: 数学を愛する会Wiki
ナビゲーションに移動 検索に移動
タグ: モバイルウェブ編集モバイル編集
タグ: モバイルウェブ編集モバイル編集
3行目: 3行目:
 
m\ddot{\bm{x}}=\bm{F}\]
 
m\ddot{\bm{x}}=\bm{F}\]
  
ここで \(m\) は質点の質量(定数)\(F\) はその質点にかかる合力( \(t\) の関数)であり、 \(x\) は位置ベクトル( \(t\) の関数)である。
+
* \(m\) :質点の質量(定数)
 +
* \(F\) :質点にかかる合力( \(t\) の関数)
 +
* \(x\) :質点の位置ベクトル( \(t\) の関数)
  
 
==例==
 
==例==

2019年9月2日 (月) 19:22時点における版

質点とみなせる物体の運動は大抵次の式で表現する。 \[\newcommand{\bm}[1]{\boldsymbol{#1}} m\ddot{\bm{x}}=\bm{F}\]

  • \(m\) :質点の質量(定数)
  • \(F\) :質点にかかる合力( \(t\) の関数)
  • \(x\) :質点の位置ベクトル( \(t\) の関数)

時刻 \(t=0\) に、質量 \(m\) の質点 \(P\) が原点で静止している。ここで \((\frac{mg}{\omega t+1},mg,0)\) の力をかける。 ( \(g\) は定数)

時刻tでの \(P\) の座標を \(\bm{x}\) とすると、 \[m\ddot{\bm{x}}=\left( \begin{array}{c} \frac{mg}{\omega t+1}\\mg\\0 \end{array}\right) \] \[\ddot{\bm{x}}=\left( \begin{array}{c} \frac g{\omega t+1}\\g\\0 \end{array}\right) \] \[\dot{\bm{x}}=\left( \begin{array}{c} \frac g\omega\cdot\ln(\omega t+1)+a\\gt+c\\0 \end{array}\right) \] \[\bm{x}=\left( \begin{array}{c} \frac g{\omega^2}\left((\omega t+1)\cdot\ln(\omega t+1)-\omega t\right)+at+b\\\frac12gt^2+ct+d\\0 \end{array}\right) \]